OPTIMAL INTEGRAL CONTROLLER WITH SENSOR FAILURE ACCOMMODATION

By

Dr. T. Alberts Old Dominion University Norfolk, Virginia

and

Dr. T. Houlihan The Jonathan Corporation Norfolk, Virginia

ABSTRACT

An Optimal Integral Controller that readily accommodates Ser.sor Failure - without resorting to (Kalman) filter or observer generation - has been designed. The system is based on Navy-sponsored research for the control of high performance aircraft.

In conjunction with a NASA developed Numerical Optimization Code, the Integral Feedback Controller will provide optimal system response even in the case of incomplete state feedback. Hence, the need for costly replication of plant sensors is avoided since failure accommodation is effected by system sof ware reconfiguration.

The control design has been applied to a particularly ill-behaved, third-order system. Dominant-root design in the classical sense produced an almost 100 percent overshoot for the third-order system response. An application of the newly-developed Optimal Integral Controller--assuming all state information available--produces a response with NO overshoot. A further application of the controller design--assuming a one-third sensor failure scenario--produced a slight overshoot response that still preserved the steady state time-point of the full-state feedback response.

The control design should have wide application in space systems. The design can be expanded to include gain scheduling that enhances system response to large-scale transients. For this latter instance, using the NASA optimization scheme, the guesswork normally required to determine feedback gains for large transients is eliminated.

Optimal Integral Control

With

Sensor Failure Accommodations

Dr. Thomas Alberts

Old Dominion University

Norfolk, Virginia

Dr. Thomas Houlihan

The Jonathan Corporation

Norfolk, Virginia

N A S A Workshop
Flexible System Control
12 July 1988

Optimal Integral

Control Design

Introduction

Optimal Regulator

Augmented System

(Rates of Change of Input Signals)

Optimal Tracker

Optimal Integral

Control Design

Sensor Failure

Accommodation

Preliminary Results:

Third Order System

Introduction

Optimal Control Designs Compromised By:

Inaccessible States (Sensors)

Noisy Feed back Signals

OC Designs Resort To Use Of

Filter / Estimating Techniques

To Overcome These Obstacles

NAVY Research in 1970s

Leads to Alternative Approach

Optimal Regulator - Classic Design

Tradeoffs Between Accuracy of Control

And Energy Expenditure Reflected

In Weighting Matrices (Q and R)

Of Performance Index (J)

$$J = \int (X^TQX + U^TRU) dt$$

Performance Index Formulation
Assumes <u>Unconstrained</u> Inputs.
In Reality, Inputs are Limited.
Futhermore, Rates of Change of
Input Signals Are Limited.

Figure 1. Typical System Response.

Figure 2. Comparative Optimal Responses.

FIGURE 3. OPTIMAL REGULATOR SYSTEM

Augmented System:

Rates of Change of Input Signals

Can be Considered

New State Vector = Old State Vector +
Input Signals

Optimal Regulator Solution of Agumented System:

 $U^* = -G^*X^*$ $G^* = |G_1|G_2|$

Gain Matrix (G*) of Augmented

System Carries Information on System

States (X) and Inputs (U)!

FIGURE 4. OPTIMAL REGULATOR-AUGMENTED SYSTEM

1013

Optimal Tracker:

Add Gain Matrix (M) to Select Command Inputs

NOTE: Tracker is NOT Integral Controller

Since Control Commands are NOT

Generated by Integral of Error

Between Desired Signals (r)

And Output Signals (z).

NOTE: Solution to Tracker Control

Configuration is KNOWN. It is

Solution of Augmented System.

Optimal Integral Control Design

Equality of Optimal Integral Control

Design and Optimal Tracker Design

Effected by Block Diagram Reduction

Techniques (Laplace Domain).

Knowns:

A, B, C, D, E - Configuration Matrices
G₁, G₂ - Augmented System Solution

Thus:

Land H Matrices are Determinable

FIGURE 6. OPTIMAL INTEGRAL TRACKING SYSTEM

Sensor Failure Accommodation

Matrices:

H = Error Gain Matrix

L = State Gain Matrix

If State Information Unavailable,

Corresponding Column Elements of L

Matrix Are Zeroed - Suboptimal Control! From Before

Hence, New Gain Matrix IG_s I = IG_{1s} G_{2s} I

Can be Determined to Effect Control

Preliminary Results are Encouraging

FIG. 7 F-100 THRUST CONTROL

Fig.9. Third Order System Response Comparison

Summary

Optimal Integral Control Design

Effected by a Combination of

Multivariable Control Analyses

Sensor Failure Accommodation

Accomplished Without Resort to

Supplemental Filter / Estimator Designs

Suboptimal Control Response

Effective for Ill-Behaved,

Third-Order Test Case

Postscript to Computational Aspects...

Lawrence W. Taylor, Jr. NASA Langley Research Center

What started as an effort to transcend various project and reasearch activities has become an official program. Computational Controls. The following charts describes that program at this early stage in its development. The next meeting on the subjects of the Computational Aspects Workshop will be the 3rd Annual Conference on Aerospace Computational Control. The conference will be held August 28-30, 1989 at Oxnard.

PRECEDING PAGE BLANK NOT FILMED

Compatient

Larry Taylor Wasarch Center

Computational Requirements

1027

Computational Controls

OBJECTIVE

"To Develop the NEW GENERATION

HIGH PERFORMANCE Aerospace

Modeling, Control, and Simulation Tools"

1029

C-6

Compatient in Some Controls

Contacts:

Lee Holcomb - NASA HQ Code RC

John Dibattista - NASA HQ Code RC

Guy Man - JPL

Larry Taylor - LaRC

Harry Frisch - GSC

Henry Waites - MSFC

Ken Cox - JSC

JUSTIFICATION

Current Practices in Formulating, Modeling and Simulating do not Meet today's needs. Hypersonic Cruise Vehicles

Multi-Component Launch Vehicles

Aeroassisted Orbital Transfer Vehicles

APPROACH

Reference Problems

- Shuttle RMS
- Earth Orbiting Satellite
- Mini-MAST
- Pinhole Occulter
- Mariner Mark II
- Optical Interferometer
- Advanced Launch System
- F 18 Fighter
- Trans-Atmospheric Vehicle

Advanced Formulations

Algorithms	
Order(n	
•	

LaRC)

(LaRC)
Modeling
Parameter
Distributed
•

Mass Keferenced Modeling	Composite Modeling
• Wa	•

[LaRC]

LaRC

Multiple Processors

[LaRC]

Array Processors

Benchmarking

[LaRC]

(LaRC)

SOFTWARE

Macintosh-Like User Environment

Simultaneous Tasking

Real-Time and Off-Line

Modular (Particular Methods)

LaRC

Data Base Management

Interactive Graphics

Related Activities

PROPOSED LARC AERO TASKS

DYNAMICS INTEGRATION AND ADVANCED CONTROL THEORY AND MODELING

• F-18 THRUST VECTORED HI- α VERSION

TRANS-ATMOSPHERIC

1039

Ω. Z

HIGH-ORDER, HIGH FIDELITY, NONLINEAR MATHEMATICAL MODELS OF HIGH PERFORMANCE AIRCRAFT

ADVANCED MODEL ORDER REDUCTION METHODS

ROBUST INTEGRATED CONTROL DESIGN METHODOLOGIES

RAPID CONTROLLER IMPLEMENTATION METHODOLOGIES

MASS/INERTIA

Plant Order Reduction for Controller Synthesis

ACTIVITIES

Advisory Committee

/Quarterly

Workshops

/Annually

Programmatic Status Repts /Quarterly

/As Available

Technical Reports

ANNOUNCEMENT & CALL FOR PAPERS

3rd Annual Conference on Aerospace Computational Control

ANNOUNCEMENT of a CLASS on

TREETOPS

A Control System Simulation for Flexible and Articulating Structures

WHEN: August 31,1989(After Conference)

WHERE: 3rd Annual Conference on Aerospace Computational Control Radisson Suite Hotel, Oxnard, CA

CONTENT:

- Overview
- Example Problems
- Hands-On Experience
- User's Manual

COST: No Charge for Class or Materials for Registered Conferees

CLASS REGISTRATION:

Larry Taylor NASA Langley 804-864-4040